Geniposide Protects Primary Cortical Neurons against Oligomeric Aβ1-42-Induced Neurotoxicity through a Mitochondrial Pathway

نویسندگان

  • Chunhui Zhao
  • Cui Lv
  • Hang Li
  • Shijing Du
  • Xiaoli Liu
  • Zhi Li
  • Wenfeng Xin
  • Wensheng Zhang
چکیده

Mitochondrial dysfunction plays a key role in the progression of Alzheimer's disease (AD). The accumulation of amyloid-beta peptide (Aβ) in the brains of AD patients is thought to be closely related to neuronal mitochondrial dysfunction and oxidative stress. Therefore, protecting mitochondria from Aβ-induced neurotoxicity is an effective strategy for AD therapeutics. In a previous study, we found that geniposide, a pharmacologically active compound purified from gardenia fruit, has protective effects on oxidative stress and mitochondrial dysfunction in AD transgenic mouse models. However, whether geniposide has a protective effect on Aβ-induced neuronal dysfunction remains unknown. In the present study, we demonstrate that geniposide protects cultured primary cortical neurons from Aβ-mediated mitochondrial dysfunction by recovering ATP generation, mitochondrial membrane potential (MMP), and cytochrome c oxidase (CcO) and caspase 3/9 activity; by reducing ROS production and cytochrome c leakage; as well as by inhibiting apoptosis. These findings suggest that geniposide may attenuate Aβ-induced neuronal injury by inhibiting mitochondrial dysfunction and oxidative stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geniposide, the component of the Chinese herbal formula Tongluojiunao, protects amyloid-β peptide (1–42-mediated death of hippocampal neurons via the non-classical estrogen signaling pathway

Tongluojiunao (TLJN) is an herbal medicine consisting of two main components, geniposide and ginsenoside Rg1. TLJN has been shown to protect primary cultured hippocampal neurons. However, its mechanism of action remains unclear. In the present study, primary cultured hippocampal neurons treated with Aβ1-42 (10 µmol/L) significantly increased the release of lactate dehydrogenase, which was marke...

متن کامل

Astrocytes Protect Neurons from Aβ1-42 Peptide-Induced Neurotoxicity Increasing TFAM and PGC-1 and Decreasing PPAR-γ and SIRT-1

One of the earliest neuropathological events in Alzheimer's disease is accumulation of astrocytes at sites of Aβ1-42 depositions. Our results indicate that Aβ1-42 toxic peptide increases lipid peroxidation, apoptosis and cell death in neurons but not in astrocytes in primary culture. Aβ1-42-induced deleterious neuronal effects are not present when neurons and astrocytes are mixed cultured. Stim...

متن کامل

Diammonium Glycyrrhizinate Upregulates PGC-1α and Protects against Aβ1–42-Induced Neurotoxicity

Mitochondrial dysfunction is a hallmark of beta-amyloid (Aβ)-induced neurotoxicity in Alzheimer's disease (AD), and is considered an early event in AD pathology. Diammonium glycyrrhizinate (DG), the salt form of Glycyrrhizin, is known for its anti-inflammatory effects, resistance to biologic oxidation and membranous protection. In the present study, the neuroprotective effects of DG on Aβ(1-42)...

متن کامل

Dehydroevodiamine·HCl enhances cognitive function in memory-impaired rat models

Progressive memory impairment such as that associated with depression, stroke, and Alzheimer's disease (AD) can interfere with daily life. In particular, AD, which is a progressive neurodegenerative disorder, prominently features a memory and learning impairment that is related to changes in acetylcholine and abnormal β-amyloid (Aβ) deposition in the brain. In the present study, we investigated...

متن کامل

Fingolimod Phosphate Attenuates Oligomeric Amyloid β–Induced Neurotoxicity via Increased Brain-Derived Neurotrophic Factor Expression in Neurons

The neurodegenerative processes that underlie Alzheimer's disease are mediated, in part, by soluble oligomeric amyloid β, a neurotoxic protein that inhibits hippocampal long-term potentiation, disrupts synaptic plasticity, and induces the production of reactive oxygen species. Here we show that the sphingosine-1-phosphate (S1P) receptor (S1PR) agonist fingolimod phosphate (FTY720-P)-a new oral ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016